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optimal design of such networks is vital. Today, urban gas
networks are implemented within a tree structure. These
networks receive gas from City Gate Stations (CGS) and
deliver it to the consumers. This study presents a
comprehensive model based on Mixed Integer Nonlinear
Programming (MINLP) for the design of urban gas
networks while taking into account topological limitations,
gas pressure, and velocity and environmental limitations. An
Ant Colony Optimization (ACO) algorithm is presented for
solving the problem, and the results obtained by an
implementation of ACO algorithm are compared with the
ones obtained through an iterative method to demonstrate
the efficiency of ACO algorithm. A case study of a real
situation (gas distribution in Kelardasht, Iran) affirms the
efficacy of the proposed approach.
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1. Introduction refinery plant to be purified, dehydrated and

The expansion of gas industry as a source of
clean fuel and the importance of this industry for
the global and national economy have attracted
much attention in the literature. Once extracted
from the producing wells, gas is collected by a
network of pipelines and delivered to a gas
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sweetened. This gas is then directed to the main
gas transmission pipelines. To compensate for the
pressure drop caused by gas consumption or
friction in the pipelines, a compressor station is
generally used per hundred kilometers to increase
gas pressure up to about 1350 psig. Branches are
split from these pipelines to supply gas to the
consumers. As this gas gets closer to the
consumption zones (cities, in general), its
pressure is reduced to 250 psig through the City
Gate Station (CGS). The network connecting gas
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refinery plants to CGSs is called gas transmission
network. The gas pressure ranges from 350 to
1350 psig in this network. Gas pressure decreases
again once the gas is branched from the CGSs
and transmitted to the Town Board Station
(TBS). TBSs reduce gas pressure to 60 psig. The
network transmitting gas from CGSs to TBSs is
called feeding network. Gas pressure ranges from
150 to 250 psig in this network. Gas is delivered
to urban consumption zones through branches
split from the TBSs. The network transmitting
gas from TBSs to urban consumption zones is
called distribution network. The gas pressure
ranges from 40 to 60 psig in this network. An
urban gas network consists of a feeding network
and a distribution network.

Transmission network projects are often strategic
and costly. A major portion of gas studies is
devoted to these networks. Some of these studies
are collected and classified in [1] and [2].
However, out of various topics in this industry,
the present study is focused on gas distribution in
urban areas. The number of construction projects
of these networks is high, having a great impact
on the economy of the cities. This aspect of gas
industry is less attractive to researchers than the
transmission networks; therefore, available
studies in this regard are scant.

Wu et al. [3] introduced a mathematical model
for distribution networks and solved it for looped
and tree networks. El-Mahdy et al. [4] introduced
a method to determine the optimal pipe diameter
in a given network using a Genetic Algorithm
(GA). Djebedjian et al. [5] introduced a
mathematical model to determine the optimal
pipe diameter in a network; in addition to solving
the model, they used a GA to solve the problem
and worked through a case study to demonstrate
the efficiency of GA. Mohajeri et al. [6] showed
how to use Minimum Spanning Tree (MST) to
design gas distribution networks. In another

study, Mohajeri et al. [7] used an Ant Colony
design

Optimization (ACO)
distribution networks.

algorithm to
Humpela et al.

proposed a MINLP model for topology of gas
networks, and in order to speed up computations,
they introduced a new class of inequalities to
relax their proposed model. Shiono and Suzuki
[9] introduced an algorithm for tree networks
with a single supply source. They assumed that
the pipe diameters were continuous. In their
study, a heuristic algorithm was presented to
convert optimal pipe diameters into approximate
discrete pipe diameters. Mikolajkova et al. [10]
presented a new model for the future extension of
a given gas network in which fluid equations
were considered. By providing a simple model
Humpola and
Serrano [11] provided a method for pruning and
increasing the computational speed in solving gas

for determining infeasibility,

networks with MINLP models.

While reviewing the available studies in this area,
researchers identified some major aspects of
designing urban gas networks by considering the
design departments in related companies (Table
1). Table 2 examines the relevant studies in two
respects: first, subjects of Table 1 are covered;
second, the specifications of the models and

methods for solving them are given.

Herein, we present a comprehensive model for
network design as provided in Table 2 and
present new approaches to solving small and
large gas urban networks. In the present study,
feeding and distribution networks are modeled
simultaneously for the first time. In addition, the
size of network
components, such as diameters of pipes and
capacities of TBSs, in the optimal network.
Herein, to avoid solving a non-linear model, an
innovative local search method is proposed and
used in an ACO algorithm to compute the

model can determine the

diameters of the network pipes.

Tab. 1. Coordinates of network elements for Example 2

CGS TBS installation candidate sites .
Consumption zones
z1=[100 800]
TBS1=[0 800] z2=[300 500]
CGS=[800 0] TBS2=[100 200] z3=[500 400]
TBS3=[500 100] 7z4=[700 700]
z5=[900 800]
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Tab. 2. Values of parameters for Example 2
Parameter description Parameter value
Number of consumption zones m=>5

i i 1 2 3 4 5 8
1 0 360.5 565.6 608.2 800 100 600 806.2
2 360.5 0 223.6 447.2 670.8 424.2 360.5 447.2

Distances in the distribution network ~ |dZ = S 5 Y 0 Y
5 800 670.8 565.6 223.6 0 900 1000 806.2
6 100 424.2 640.3 707.1 900 0 608.2 860.2
7 600 360.5 447.2 781.0 1000 608.2 0 4123
8 806.2 447.2 300 632.4 806.2 860.2 4123 0
i i 6 7 8

. . . 0 608.2 860.2

Distances in the feeding network dT = 3 5052 10 23
8 860.2 4123 0
9 1131.3 728.0 316.2

Volume of gas consumed in the
consumption zones

D=[1000;4000;6000;8000;5000]

Number of candidate TBS installation
sites

n=3

Number of TBS varieties installable in
the network

Ts=3

Volume of gas deliverable by each
type of TBS

C=[5000 ; 10000 ;25000]

Cost of TBS types

CoT =[30000; 50000 ; 100000]

Cost of choosing each candidate TBS
installation site

CoS8=[10000;10000;10000]

Number of pipe varieties used in the
distribution network

P=3

Diameter of the pipes used in the
distribution network

57=[6;8;10]

Cost of the pipe varieties used in the
distribution network

CLZ=[50:65;85]

Number of pipe varieties used in the
feeding network

W=3

Diameter of the pipes used in the
feeding network

ST=[10;12;14]

Cost of the pipe varieties used in the
feeding network

CLT=[85;105;130]

Maximum gas velocity in the network

(m/s)

MaxV Znet = MaxV_Tnet =20 m/s

Minimum pressure in the distribution
network (psig)

MinP Znet = 40, psig=54.7 psia

Minimum pressure in the feeding
network (psig)

MinP_Tnet=150 , psig=164.7 psia

It should be noted that we are to obtain an
designing urban gas

optimal solution for

hypotheses are described

in Section 2. A
mathematical model is introduced in Section 3

networks using an algorithm in our mathematical
model. An optimal solution consisting of a
topology of the designed network shows the
connection of nodes by pipes, called optimal

design, chosen pipe diameters, and TBS
capacities in the network, called optimal pipe
diameters and optimal TBSs capacities,
respectively.

The rest of our work is organized as follows. The
statement of the problem, limitations, and

and validated in Section 4. An ACO algorithm is
introduced in Section 5 for designing gas
networks. Numerical results and discussions are
presented in Section 6, and a case study is
worked through in Section 7. We conclude the
paper in Section 8.

2. Problem Statement
An overview of a gas network is shown in Fig. 1.
In this figure, gas sub-networks, their locations,
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connections, equipment, and especially the
components of the feeding and distribution
networks, are clearly demonstrated.

An urban gas network can be regarded as a graph
consisting of nodes, including CGSs, TBSs and
consumers (zones) as well as edges representing
the pipelines connecting the nodes. Designing a
network for supplying gas to urban consumers
presents four limitations including topological
limitations, fluid limitations, material and
equipment limitations, and physical-

Producing well

Gas refinery plant
D Compressor station

City gate station
A Town Board Station (TBS)
0] Consumer (Zone)

Gathering pipe network

Transmission pipe network

Feeding pipe network

Distribution pipe network

environmental limitations. An optimal gas
network does not only supply the consumers’
required gas, but also meets the limitations and is
built with a minimal cost (including the costs of
feeding and distribution networks). The cost of
building the network involves the cost of
equipment procurement (pipes and TBSs),
construction cost, and the cost of land
acquisition. The cost of land acquisition is
comprised of the cost of buying land and
satisfying other beneficiaries.

%]
o

Sp===SF=zz:z:=== GRP
‘¢
Erzszsfizzzzzzzd Grp

JD:::

Fig. 1. An overview of a gas network

2-1. Topological limitations

e The network is developed within a tree
structure.

e The network is directed, that is, gas can flow
in only one of the modes as shown in Table
3.

e There is no connection from a node to itself.

e There can only be one connection from any
node to another node.

e The pipe diameter is in a descending order,
that is, the gas flows from pipes with larger
diameters to pipes with the same or smaller
diameters —not in the reverse order.

2-2. Fluid limitations
e Kirchhoff's circuit laws govern the network’s
nodes.

e The maximum gas velocity has an upper limit
and the minimum gas pressure has a lower
limit in the pipelines.

In gas distribution networks, the minimum
acceptable pressure is 40 psig for the
consumers and 150 psig for the efficient
performance of the TBS, which are equivalent
to 54.7 and 164.7 psia. The maximum gas
velocity is usually less than 20 m/s. There are
various methods for calculating the pressure
between two points in a pipeline [14]. A
simplified IGT equation is used here:

L 1.8
2 PZ_
Prie [1076Xd4'8] o . M

where L is pipe length in meters, Q is volume
flow rate in m’/h and d is pipe’s inside diameter
in inches, and P; and P, are respectively the

International Journal of Industrial Engineering & Production Research, December 2017, Vol. 28, No. 4



A Mathematical Model for Designing Optimal Urban Gas
Networks, an Ant Colony Algorithm and A Case Study

M. Torkinejad, I. Mahdavi , N.
Mahdavi-Amiri & M.M.  Seyed 445
Esfahani

upstream and downstream pressures in psia. The
gas velocity is calculated using the following
equations:

where

V is the gas velocity in m/s,

Q is the volume flow rate in m*/h,

T is the temperature in Rankine (T = 520 °%),

P, s the average pressure in psia,

P is the upstream pressure in psia,

P, is the downstream pressure in psia, and

d is the pipe inside diameter in inch.

2-3. Material and equipment limitations

Pipes available in the market have specific
diameters. TBSs are also produced with specific
capacities. They offer limited choices for
application.

2-4. Physical-environmental limitations
Depending on the location where the urban gas
network is to be built, land dues, rivers, historical
sites, environmentally protected areas, etc.,
present limitations to the choice of a place for the
installation of TBSs and the transition of
pipelines, which may not freely be installed
between any two selected nodes.

2-5. Assumptions

The following assumptions generally hold in the
design of urban gas networks.

(1) Pipe’s material is the same in the entire
network.

3-1. Parameters

(2) Pipes are installed horizontally on the same
level, that is, the upstream and downstream
elevations are the same for all the pipes.

OxT
V=0.0155 5 )
avexd
P —21pap,) LD 3
ave_3[( 1 2)'P1+P2]: ( )

(3) There are no active elements such as
compressors in the network.

(4) Flow in the network is assumed to be steady,
that is, pressure and velocity do not vary with
time.

3. Urban Network Modeling
Herein, a mathematical model is presented
containing binary and continuous variables.
Binary variables in the model are used to show
the presence or absence of pipes between two
nodes and also to show the installation of a TBS
on a TBS installation candidate site. A number of
sites are first selected as TBS installation
candidate sites before starting the design of the
urban network, and designers are to select the
most appropriate one among them for installation
of the TBS. Continuous variables are used to
show the amount of flow and the average gas
velocity between any two nodes and to also
determine the pressure in each node. The
parameters, variables and limitations of the
model are presented in the following section.

M Number of consumption zones
N Number of candidate TBS installation sites
P Number of pipe varieties used in the distribution
network
W Number of pipe varieties used in the feeding
network
SZ,, p=1,..,P Diameter of pipe type p in the distribution network
ST, w=1,..,.W Diameter of pipe type w in the feeding network
Ts Number of TBS types installable in the network
A7, L=l mtn, i D.ista.lnce. between the zones and the TBSs in the
v Voo ’ distribution network
i=m+l1,... . mtn+l
AT s Distance between the CGS and the TBSs in the
Y j=m+l,....m+n, feeding network
i#
S=81+ 8,
S, $i= m(m —1)%mn Number of connections in the network
Szz n2
L Number of physical-environmental limitations

Coefficient matrix of the physical-environmental
limitations

International Journal of Industrial Engineering & Production Research, December 2017, Vol. 28, No. 4



446 M. Torkinejad, I. Mahdavi*, N. Mahdavi- A Mathematical Model for Designing Optimal Urban Gas
Amiri & M.M. Seyed Esfahani Networks, an Ant Colony Algorithm and A Case Study
b Matrix on the right-hand side related to the
physical-environmental limitations
» Volume of gas consumed by each consumer per unit
D;, i=1,....m .
of time
. =1....Ts Yolume of gas delivered by TBS type ¢ per unit of
time
_ Cost of installing pipe type p per unit of length in
CLZy, p=l,...P the distribution network
CLT,. wel,. W Cost of .installing pipe type w per unit of length in
the feeding network
CoS; =m+l,...,m+tn Cost of choosing location i for TBS installation
CoT;, =1,...,Ts Cost of TBS type ¢
CaT;, =mtl,..., mtn Maximum TBS capacity installable in location i
T Temperature in rankine (T = 520 °)
. ., . Diameter of the pipe connecting node i to node j in
ZD; =L mdn, ) e distribution ngtl\)zvork ¢ ’
i=m+l1,... . mtn+l
, Diameter of the pipe connecting node i to node j in
TD[] . .
j=m+l,...mtn, the feeding network
i#Jj
ave .. ., . Average pressure in the pipe connecting node i to
2Py W=Loomtn, B de jgin gle distribution riag)vork ¢
i=m+l1,... mtntl
7P , Average pressure in the pipe connecting node i to
Y j=m+l,...mtn, node j in the feeding network
i#
MaxV Zne Maximum gas velocity in the distribution networks
t in m/s
MaxV_TNe Maximum gas velocity in the feeding network in
t m/s
MinP Znet Minimum gas pressure in the distribution network
- in psia
MinP Tnet M%nimum gas pressure in the feeding network in
- psia.
3-2. Variables
=L, i Thej arc between two nodes in the distributiqn netvyork .
Xip ’;i’ P’ If node i is connected to node j through a type p pipe, this variable
Pl is one; otherwise, it is zero
Connections in the distribution network
X, ij=1,...,m+n ,i# Ifnode i is connected to node j, this variable is one; otherwise, it is
Zero
i=m+l,... mtn+1 The arc between two nodes in the feeding network
Y. Jj=mtl,... m+n, If node i is connected to node j through a type w pipe, this variable
R i# is one; otherwise, it is zero
w=1,...W
i=m+l,... m+tn+1 Connections in the feeding network
Y; J=mtl,... m+n, If node i is connected to node j, this variable is one; otherwise, it is
i# Zero
T i=m+1,....mtn If TBS type ¢ is installed in location i, this variable is one;
i =1,...,Ts otherwise, it is zero
12, =L, Volume of gas passing thrg:t%il;lelch edge in the distribution
i=m+l,... mtntl
Ty J=mtl,... m+n, Volume of gas passing through each edge in the feeding network

i#
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ZP; i=1..m
TP; i=m+l,....mtn
AZ ij=1,...m+n , i#
i=m+l,... mtntl
TV Jj=mtl,... m+n,
i#

3-3. Mathematical model

Our proposed model is a mathematical
programming model with linear and non-linear
constraints with the aim of minimizing the total

Gas pressure at node i in the distribution network in psia
Gas pressure at node 7 in the feeding network in psia
Velocity of gas passing through each edge in the distribution

network in m/s

Velocity of gas passing through each edge in the feeding network

in m/s.

installment cost of distribution pipelines (Z,),
cost of installing feeding pipelines (Z,), cost of
procurement and installation of TBSs (Z;), and
cost of choosing candidate TBS sites (Z,):

cost of network’s installation including
min 7= Z1 +7,+ 7347 “4)
m+n m
7= z Z ZXUP dZ; CLZ, )
i=1 j=1, j#i p=1
mtn+1 m+n
Z,= 2 2 ZYUW dT; CLT, )
i=m+1 j=m+l1, j#i w=I
m+n  Ts
Z3: Z Z COSI‘.TZ‘I (7)
i=m+1 t—l
mtn  Ts
Z= Z Z CoT, T, ®)
i=m+1 =1
S.t.
P
Z(Xyp X<, ij=1,..m, i<j ©)
p=1
W
Z(Yijf iiw)<1 Lj=m+1,...m+n , i<j (10)
w=1
P P
i=1,....m+n
< 2 2
Z(Xjkp SZp)—Z(Xzyp~ 52 =1, .m, itk (an
p=1 p=1
- - =mtl,. ]
=m+l,....mtn
Z (ijw ' STW)SZ (Yijw - ST) Jk=m+1,... m+n, iA+k (12)
w=1 w=1
P
ZXUP <1, i=m+l,....mtn, j=1,....m (13)
p=1
2 Y, <1, =mtntl, j=mtl,...mtn (14)
w=1
mtn P
ZZXU"’ -1, J=1,...m, j#i (15)
i=1 p=1
mtn W m P mt+n+1 w
(Z ZYUWJrZZXI@)(I Z ZYJ,W) 0, i=m+l,.. min, i##k (16)
J=m+1 w=1 k=1 p=1 j=m+l  w=1
mtn  m P
IPIPI o
i=1 j=1j# p=1
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mtnt+1 m+n m+n  Ts
> S S-S as)
i= m+1] m+1,j# w=1 i=m+1 =1
Z < i=m+l,....m+n (19)
m+n+l Tv

Z ZYJM ZTlt , i=m+1,...,m+n (20)

J= m+l,]¢z w=1

Z Tls -xs:bl 5 lzl,...,L (21)
s=1
mtn Ts
RE (22)
=m+1 =1
mtn W
Z Z Yo 21, i=m+n+1 (23)
J=m+1 w=1
m mtn
D+ Z 17, Z 12, . i=1,....m (24)
U E R
m+n mtn+t1
Z ]'ZU+ Z le/ Z ﬂ}w i=m+l1,...,mtn (25)
J=1, J# JEm+l, j# JEmtl,
m
Z JZ,<CTM; i=m+1,...,m+n (26)
=
_ i=1,....mtn
fZij(l'ZX"f?’)_o’ J=1m, i @7)
p=1
i=m+l,... . mtn+1,
fTij(l-Z Yi)=0., j=mtl,. . mtn, i (28)
mtn Ts
> Yar, _ZD (29)
=m+1 =1
(ZfZij) (1-2 T,)=0, =, mtn (30)
= =1
m N
Zle.js ZCaTi.Tit , i=ml,.. mn 31)
=1 =1
7P 7p2. g7 18 i=1,...,m+n
( i J [1076 ZD48 ny ) UP j=l,...,m, l?f] (32)
TP TP2- L8y =0 i=m+l1,...,m+tn+l,
fZl XT =1 +
ZV;=0.0155 —2—— e
v ZP?.VexZDé ’ j=1,...,m, i (34)
.XT .
i=m+l1,... . mtn+l,
TV;=0.0155 TPM TD2 , Jem L mn, i (35)
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P
_ i=1,....mtn
V(- ) Xyp)=0 J=L,..m, i (36)
p=1
- =, et
=m+l1,....m+tnt+l,
TVin(l'z ¥Yw)=0 , j=m+l,. . mtn, i#j 37)
w=1
ZP> MinP Znet , i=1,....,m (38)
TP> MinP Tnet , i=m+1,...,m+n (39)
i=1,....m+n, i#
ZVy< MaxV _Znet E— (40)
> i=m+l,... mtntl, i#
TV;< MaxV _Tnet =L mn (41)
ZP=TA7, i=mtl,..mtn (42)
TP;=264.7 i=mtn+1 (43)
ij=1,....m+n, i#
€013, -l P i
Yo Toefo.1 ij=m+1,....m+n, i#, jFmtn+l
ywot it { s }7 W:1,...,W, lzl,..-,rq (45)
1220, ij=1,...,m+n, it (46)
le.JZO , ij=m+1,... . mtn,itj, jFm+tn+l. 47)

Equation (4), the objective function of the
problem, involves four terms, as shown by
equations (5)-(8), to show the total cost
comprising cost of distribution network, feeding
network, choosing candidate TBS sites, and cost
of TBS installation. Constraints (9)-(21) are
concerned with the network topology, constraints
(22)-(43) pertain to gas flow in the network, and
constraints (44)-(47) show the model’s variable
types. Constraints (9) reveal that each of two
zones in the distribution network is
interconnected with no more than one type of
pipeline, and constraints (10) show the same in
the feeding network. Constraints (11) consider
the pipe diameters in the distribution network in a
descending order. Constraints (12) do the same
for the feeding network. Constraints (13) show
that each TBS node can be connected to a zone
with only one type of pipe in the distribution
network. Constraints (14) show the same for the
feeding network, i.e., each TBS node can be
connected to a CGS node with only one type of
pipe. Constraints (15) indicate that each zone
should have only one input that can branch from
a TBS or another zone. Constraints (16) show
that if a pipe is connected from a TBS to a zone
or another TBS, that TBS should have an input
that can have branched from another TBS or a
CGS. The number of edges or the pipes between
the nodes is exactly equal to that of zones in the
distribution network, as shown in constraints
(17). Constraint (18) shows the same for the

feeding network, i.e., the number of edges equals
that of active TBSs. Constraints (19) imply that
no more than one TBS can be determined for a
candidate site in the final solution. Constraints
(20) show that a TBS considered for a candidate
site should have at least one pipeline as its input.
Constraints (21) show the physical-environmental
limitations presented in the design of networks.
Binary variables X; and Y, signifying the
connection of node i to node j in the distribution
network and the feeding network, are used to
define these limitations. These variables are
calculated using the following equations:

P

X= ) X (48)
p=1
w

Y= Yy (49)
w=1

Assuming m consumers and n candidate TBS
installation sites, the number of connections in
model S equals §;+S,, in which S; is the number
of connections in the distribution network and
equals m(m—1)+mn, and S, is the number of
connections in the feeding network which is
equal to n*>. Matrix R and vectors X and b are
used to indicate the constraints. Vector X is a row
vector consisting of all the network connections
(with S elements). Each element of this vector is
shown by x, in the following general order:
X=[Xip Xig oo X oo Xt Xt or Xt
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Yn+1,n+2 Yn+1,n+3 s Yn+1,n+m

Yn+m,n+l Yn+m,n+2 Yn+m,n+m—l

Yn+m+l,n+l Yn+m+1,n+2 Yn+m+1,n+m]'
Matrix R consists of limitation coefficients, and
each row of it contains the coefficients of the
variables related to one limitation. Each element
in this matrix is shown by 7, in which s=1,...,S
and /=1,...,L (L is the number of limitations).
Vector b is a column vector and includes values
of the right-hand side of the physical-
environmental limitations. Example 1 elaborates
on this point further.
Example 1:
Assume that gas needs to be supplied to four
consumers (m=4), shown by nodes 1 to 4, from
one TBS (n=1), shown by node 5. Examining the
project location leads to the identification of two
limitations (L=2):
e Node 3 cannot be connected to node 2.
e Node 2 should be connected to node 4, and

node 4 should be connected to node 3.

Assuming that three pipe diameters (P=3) are
available for the project, these limitations are
defined as follows:

P
Z X32p=0,
p=1
P P
Z Xo4,t Z KXazp=2 .
p=1 p=1

The matrix representation of these limitations is
as follows:

X=X, Xz Xig X Xo3 Xog X Xz Xzg Xa
Xap Xa3 Xs1 Xsp Xz Xsg Xgs)

The limitations of design in this example are thus
shown by Constraints (22) and (23) applying two
similar limitations, that is, at least one TBS
should be selected in the distribution network and
the CGS should be selected in the feeding
network. Constraints (24) show Kirchhoff's law
in the consumption nodes, that is, the amount of
input gas in each zone equals the zone’s
consumption and its total output gas. Constraints
(25) show the same for TBSs, that is, the amount
of each TBS’ output gas transmitted to the
distribution network plus its output gas delivered
to other TBSs equals the input gas of that TBS.
This input gas is supplied by one of the TBSs or
the CGS. Constraints (26) ensure that the total
gas transmitted from a TBS candidate site to the

consumptions sites should not exceed the
maximum capacity of the TBS installable in that

1000000000]
0001 0O0O0O0OTO0TOQO0F

site. Constraints (27) ensure that when gas flows
between two nodes in the distribution network,
the two nodes are interconnected. Constraints
(28) imply the same for feeding networks.
Constraint (29) clarifies that the capacity of the
TBSs installed in the candidate sites should
exceed the total consumption in all the
consumption zones. Constraints (30) ensure that
if gas flows from one TBS candidate site toward
a consumer, one TBS type should have been
selected in that candidate site. Constraints (31)
show that the total output gas of a TBS candidate
site should be less than or equal to the capacity of
the TBS installed in that site. Constraints (32)
show that if there is a pipe between two nodes in
the distribution network, Equation (1) should
hold between the two nodes. In constraints (32),
the average pressure between two nodes is
obtained through Z ijve=§ [(P+P))- ii f ], and the

P
P,
diameter of the pipe connecting these two nodes
is obtained through ZD;= Z}};ISZ,, xX;;
Constraints (33) show the same for the feeding
network. Constraints (34) and (35) show the gas
velocity in the distribution network and the
feeding network based on Equation (2).
Constraints (36) and (37) indicate that gas
velocity is a number other than zero if there is a
connection between the two nodes in the
distribution and feeding networks. The minimum
acceptable gas pressure in the distribution and
feeding networks is ensured with constraints (38)
and (39). Constraints (40) and (41) impose
limitations on the maximum gas velocity in the
distribution and feeding networks. Constraints
(42) and (43) show the output pressure of the
TBSs and the CGS. Constraints (44) and (45)

17

Z rg .)CS:bl N

s=1

show the binary variables, and constraints (46)
and (47) clarify that flow cannot take a negative
value in a pipe.

=12, b= B] .

4. Model Validation
Pipesim software is used to verify the model and
its proper performance in the exact calculation of
gas pressure and velocity. This software is an
instrument for simulating oil and gas networks
and can be used to analyze an existing network
(Pipesim cannot be used to design a network).
Example 2 gives the optimal solution for a gas
supply network. The topology of an optimal
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network is determined and the gas pressure and
velocity in the network are also obtained once the
model is solved. To ensure the exact calculation
of gas pressure and velocity, the topology
obtained from the model is solved again using
Pipesim, and gas pressure and velocity are also
calculated in the network, and the solutions
obtained through the two methods are compared.
Example 2:

Five municipal districts are supposed to receive
gas from three TBS installation candidate sites.
The coordinates of the sites and the values of the
parameters for the example in accordance with
what is formerly introduced in Section 3-1 are
provided in the Appendix.

Table 4 presents the data obtained by optimally
solving the example including the selected
optimal pipe diameters and nodes, the upstream
and downstream pressures, gas velocities in the
pipes and cost of the network, and Fig. 2 presents
its corresponding gas network.

The problem was solved by Pipesim through
entering the topology obtained by solving the
model in the same software. Table 4 presents the
results obtained from this software in percentages
along with comparison with the results obtained
from the previous method using the following
equations:

L Poptimal-Ppipesi
Pressure deviation = [—2——2==1 x100  (50)
P()ptimul
. . Voptimal=V Pipesi
Velocity deviation = |—2——2==| x100.  (51)
Optimal

Fig. 3 shows the distribution network of Example
2 in Pipesim. As shown, the calculations
performed by both methods for obtaining gas
pressure and velocity are acceptably close to each
other, and the maximum deviation in either of
them does not exceed 2.4%. The proposed
mathematical model gives a value as the average
gas velocity in each pipe, while Pipesim
calculates the upstream and downstream gas
velocities. Table 4 shows the difference between
the two methods in the calculation of gas velocity
based on the comparison of gas velocity obtained
from the model with the average upstream and
downstream velocities obtained from Pipesim.

5. Algorithm for Designing Gas Networks
The shortest route somehow matters when
designing gas distribution and feeding networks,
that is, the consumers’ required gas should be
transmitted through the shortest route, and the
limitations set forth in Section 2 should be
considered when determining this route. The goal

here is to find the shortest route from a specific

node to any other node in a network. Several

methods have been proposed to date for solving

this problem, and Cherkassky et al. [15]

examined the weaknesses and strengths of some

of those methods. Also, several metaheuristic
algorithms, including ACO, have been proposed

for solving this problem [16].

Given that the problem of distribution and its

relevant issues are NP-complete, a metaheuristic

algorithm is proposed to solve this problem.

Algorithm 1, an algorithm for designing networks

(Design Net function), uses the ACO_ACS

method to provide a list of solutions that meet all

the constraints noted in Section 2, sorted in an
ascending order in terms of costs. The basic steps
of Algorithm 1 are shown as a function in

MATLAB.

As indicated, the Design Net function receives

the coordinates of the zones, TBS installation

candidate sites, the coordinates of the CGS, the
correction matrix and the matrices involving SZ,

ST, CLZ, CLT, CoS, CoT, and CaTl variables

(defined in Section 3-1) as input. The physical-

environmental limitations stated in Section 2-4

are applied to the network design using the

correction matrix. The entries of the correction

matrix are binary. The element (i,j) refers to a

connection if it is one, and the lack of a

connection between 7 and j if it is zero, as in the

following cases:

e When the connection between two nodes is
physically impossible (e.g., passing through a
protected area).

e A node of the zone type cannot be connected
to the TBS or CGS.

e The CGS node cannot be connected to a
zone.

At first, the function Cal Distance receives the

location of the zones, TBSs, and CGS and

calculates the distances between the locations and
stores them in a matrix. The distances are
corrected using the correction matrix and stored
in Corrected Mat. Then, the values of the
parameters in the Design Net function are
determined with Set Parameters(). The function

ACO-ACS(), described in detail in Section 5-1,

provides a list of topologies that meet all the

limitations noted in Section 2 along with their
lengths. The function Find Sizes(), described in
detail in Section 5-2, determines the optimal

sizes of the TBS and pipes for each topology in a

way that the relevant network cost is minimized.

If it is possible to determine the optimal size of

International Journal of Industrial Engineering & Production Research, December 2017, Vol. 28, No. 4



452 M. Torkinejad, I. Mahdavi*, N. Mahdavi- A Mathematical Model for Designing Optimal Urban Gas
Amiri & M.M. Seyed Esfahani Networks, an Ant Colony Algorithm and A Case Study

the TBS or pipes and meet the minimum pressure
and maximum velocity limitations, this function
will return the variable Net Ok with a value of
one, and with a value

of zero, otherwise. The cost of topology is
calculated using

Cal Cost(). The function Save Sol() stores the
network topology; the sizes of the pipes, the
TBSs, and the cost of the network are used in
Sol_List.

Algorithm 1- The network design algorithm (Design_Net function).

function [Sol List]=Design Net (Zone Mat, TBS Mat, CGS, Correction, SZ Mat, ST Mat, CLZ Mat,
CLT Mat, CoS_Mat, CoT Mat, CaT_Mat)
Dis Mat=Cal Distance(Zone Mat, TBS Mat, CGS);
Corrected Mat=Dis Mat.*Correction;
Set Parameters(); % tau0, No_of Ants,I Max, T Max, T Max, R Max, beta, rho, q0
k=1,
Net Ok=0;
for i=1:D_Max
[Top_Bank, No_of Top]=ACO_ACS(Zone Mat, TBS Mat, CGS, Corrected Mat, tau0, No_of Ants,
I Max, T Max, S Max, beta, rho, q0);
for j=1: No_of Top
[Net sizes, Net Ok]=Find Sizes(Top Bank, j, R Max, SZ Mat, ST Mat, CaT_Mat);
if Net Ok
Cost=Cal_Cost(Top_Bank, j, Net_sizes, Dis Mat, CLZ Mat, CLT Mat, CoS_Mat, CoT Mat);
Sol List=Save Sol(Top Bank, j, Sol List, Net sizes,Cost,Pres Vel Mat.k);
Net_Ok=0;
k=k+1;
end
end
end
end

5-1. ACO-ACS Algorithm for determining the algorithm developed for ACS as Algorithm 2

network topology

Of the numerous methods introduced for the
implementation of ACO algorithm [17], the Ant
Colony System (ACS) was chosen for use in our
study. Bunabio et al. [18] provided the details of

or the ACO-ACS algorithm. Implementing this
algorithm yields a series of network topologies
along with their individual lengths as stored in
Topology bank. The symbols used in this
algorithm are:

using this method. We present a pseudo-code of

IS\Io_of_Ant Number of all the colony ants
I Max Number of times a zone is randomly
- chosen
Coe A coefficient for determining I Max
Maximum number of iterations allowed
T Max for
the algorithm
Number of times the topology is obtained
S Max .
- from the arranged pheromone matrix
. Amount of initial pheromone (determined
0 in Algorithm 1)
T Amount of pheromone placed on arc (i,j)
;i Inversion distance between nodes i and j
S A set of nodes adjacent to node i to which
1

the " ant can be transported (in the first
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step)
A set of nodes adjacent to node i to which
N; it can be transported without forming

loops (in the second step)
Parameter determining the importance of

p pheromone against distance
A random quantity with a uniform
1 distribution in the range [0, 1]
A problem parameter for determining the
9 method of choosing the next node (0 < qy
<1
R (9) Route that transports the k" ant from a
given zone to the CGS in the /" iteration
Length of the route that transports the k"
LF (1) ant from a given zone to the CGS in the
iteration
r Topology obtained in the s™ iteration
Coefficient of evaporation of pheromone
P from the edges
Maximum number of searches
R Max obtaining the optimal TBS and pipe sizes

for a topology.

Algorithm 2 has two main steps. In the first step,
pheromone in the constant amount of 7, is
initially placed on all the possible routes based on
Corrected Mat. This parameter is experimentally

obtained from ry=m XL, where m is the number
of zones and L is the sum of all elements in
Corrected Mat. The shortest route from a zone to
the CGS is chosen for each zone determined in
the For loop. Once the route is selected, some
routes will have more pheromones, and once the
next zone is selected, the colony ants select the
shortest route to the CGS depending on the
current pheromone placed on the routes. In other
words, each time a route is selected from a zone
to the CGS, the decision is based on the
experience accumulated so far. The For loop is
iterated for I Max times. The amount of I Max
should be big enough so that all the zones are
selected at least once by the end of this loop.
Therefore,  this  parameter is  chosen
as I max=Coexm, where m is the number of
zones. The shortest route selected by the colony
ants from a zone to the CGS is stored in R+
matrix and the length of the route is stored in L+
variable. The algorithm shows how the next node
is chosen and the pheromones updated. In the
second step of the algorithm, effort is made to
obtain a network topology from the pheromone

placed on the routes for S Max times. Example 3
elaborates on this in further detail.

Example 3:

Assume a network with three consumers (zones)
and two TBS installation candidate sites
(Coordinates of elements in the network are
provided in the Appendix.). The data in Table 5
provide the amount of pheromone in each edge of
the network as the output of the first step of the
ACO-ACS algorithm.

In the first step of Algorithm 2, the ants’
movement is assumed to be from the zone to the
CGS, which is opposite of the real direction of
gas flow. Table 5 is therefore arranged into Table
6 (the array S) after correction of the direction.
Table 6 does not copy all the entries of Table 5;
for instance, given a choice between entries (2,3)
and (3,2), the second entry, which has more
pheromone, is inserted into the table with the
order of its row and column also changed.
Assume one of the iterations in the second loop
of the second step (e.g., s=1). The following
probabilities are first calculated based on

Equation (57) in order to choose a TBS:
16.725

Psa™T672544.0787 O8>
40787

|
P65~ 1672514.0787

Algorithm 2- ACO-ACS algorithm for determining the network topology.

Start
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/*first step™/
/* Assume that 7 is the initial number of pheromones on each arc.*/
Set Z to be 1.
Repeat
Randomly select the current node i among the consumers.
Put all the No_of Ants in the current node i.
/*Assume that R" is the shortest route between the selected consumer and the CGS and its length is

L%/
Set to be 1.
Repeat
Set k to be 1.
Repeat
Put all the zones and TBSs in the Candidate List.
Repeat
Select next node j from the members of the Candidate List based on the following
equation:
f :
_jargmax o {[rm(t)]' [n]] } if g=q, (52)
J, if ¢>q,,
where JEJ{‘ is obtained based on the following probability:
o )
L= 7 - (53)
Z / EJ’E‘ [Til(t)]'[r]ﬂ]
Omit node j from the Candidate List.
Apply the local update rule for the pheromone in each ant transmission based on the
following equation:
7;(D—1-p)7;(D+p-1p - (54)
Until reaching the CGS node,
Set k to be k+1.
Until k> No_of Ants
Set & to be 1.
Repeat
Put the route chosen by ant & and its length respectively in R* (f) and L* (2).
Set k to be k+1.

Until k> No_of Ants
If a route shorter than L" is found, Then update R" and L".
Update the pheromones in the arcs of the shortest route ((i,j) € R") using the equation below:

1
rl-j(t)<—(1—p)-rij(t)+p-Ar,-j(t), Ar,-j(t)=F . (55)
Set the pheromone of each arc in the ++1™ iteration as the pheromone obtained in the #” iteration:

Set ¢ to be ¢+1.
Until 1> T Max
Set z to be z+1.
Until z>T Max
/*Second step*/
Develop the S matrix with the triple (/, 7, 7;;) and arrange it in an ascending order based on 7;; values.
Of the two arcs (i,7) and (j,7) in the S matrix, omit the arc with fewer pheromones.
Set s to be 1.
Repeat
Repeat
Of the TBSs connected to the CGS in the S matrix, find the next node i using the equation

following and store it in the 7° matrix:
p _ CGS.i 57
CGS,i 3 erBss teas, (7
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Repeat
find the next node ;j using the following equation and store it in the 7° matrix:
—_ i
Pij"3 IeN; Tl (58)

Until no other node is available

If the 7° matrix involves all the consumers (zones) and the topological limitations are met Then
Calculate the length of the network in the 7° matrix.
Store the T*° matrix and its corresponding length of network in Topology Bank.
Until all the consumers are selected or the 7° matrix is found

Set s to be s+1.
Until s > 1 Max

Print the minimum length of network obtained from the 7° matrix and its corresponding network as the

output.
End

According to these calculations, the probability
of choosing the TBS with node 4 is 0.8 and the
probability of choosing TBS with node 5 is 0.2.
Assume that the TBS with node 4 is chosen in
this step. The next node is chosen from nodes 1,
2, and 3 with probabilities 0.72, 0.16, and 0.12,
respectively. Assume that node 1 is selected as
the next node. It is impossible to enter another
node from node 1. These steps are therefore
iterated by returning to array S and choosing
another TBS. Assume that the TBS with node 4 is
chosen again, and node 2 is chosen next and node
3 afterwards. When moving from one node to the
next, the selected route is stored in Table 7,
which contains array T". Given that all the zones
have been chosen and since none of these choices
violates the topological limitations presented in
Section 2-1, the total length of the network is
calculated and stored in Topology Bank together
with array T'. Fig. 4 shows the topology of this
network.

5-2. Parameter Determination

The parameters of Algorithm 2 have a significant
effect on the obtained results; choosing their
correct values is very essential. To obtain the best
value for these parameters, first, a set of values
for each parameter was chosen according to the
second column of Table 8 and then the network
cost for each of the 4374 possible combinations
was calculated by running the algorithm. The
deviations of the results from the optimal costs
obtained by Algorithm 1 were then assessed by

Equation (59). The value that creates the least
deviation was selected from among the different
values of each parameter. For instance, from the
three values (0.5, 2 and 4) allocated to parameter,
=2 produced the least deviation from the result
obtained by Algorithm 1. The best value of this
parameter is therefore 2. The selected values for
the parameters are shown in Table 8.

_ |Costopimar-Costaco acs| (59)

Cost Optimal

5-3. Algorithm to determine network items

This algorithm, with the pseudo-code as given
by Algorithm 3, is used to determine the capacity
of TBSs and pipe diameters in the problem.
Algorithm 3 receives the solution obtained from
Algorithm 2 and wuses it to develop a
mathematical model. Once the model is solved,
the minimum diameter of each network pipe with
minimum piping cost is obtained. The amount of
gas flowing in each pipe is then determined, and
the optimal capacities for the TBSs are
determined based on that amount. In this step, the
data required for calculating gas pressure and
velocity in each pipe are obtained according to
equations (1) and (2). If the obtained values meet
the minimum pressure and maximum velocity
limitations of gas, the solution is optimal;
otherwise, the solution is discarded and the
search continues for finding the optimal solution
or reaching the upper bound of the number of
iterations for the algorithm (R-Max). Example 4
presents how each of these steps is performed.

Algorithm 3- Method for determining items of the network.

Develop a mathematical model based on the topology of the network received.

Set i to be 1.
Repeat

Solve the mathematical model to determine the diameter of each pipe in the network.

Calculate the amount of gas flowing in each pipe.
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Determine the minimum capacity needed for each TBS.
Calculate the gas pressure and velocity in each pipe.
If the calculated values do not meet the minimum pressure and maximum velocity limitations of

gas, Then

Discard the obtained solution from the mathematical model by applying the relevant

constraint.
Set i to be i+1.

Until i > R_Max or the calculated values meet the minimum pressure and maximum velocity limitations

of gas.

Example 4:

Herein, the execution of Algorithm 3 is examined
for Example 3. The values of parameters for the
example are provided in the Appendix.

Based on the input received from Algorithm 2,
i.e., Table 7, which can also be shown as
Y64=X41=X42=X,3=1, part of the model in
Section 3-3 is selected to develop the new model.
The parameters and variables of the new model
are the same as those provided in Sections 3-1
and 3-2 and the objective function, i.e., equation
(60) below, including equations (5) and (6). The

P P

rule that the pipe diameters must be in a
descending order, stated by constraint (11), is
applied according to constraint (61), as shown
below. Moreover, constraint (12), which is
associated with this part of the network, cannot
be expanded because the feeding network in this
example has only one member. Constraints (62)-
(65) below ensure that the two selected nodes are
connected to each other with exactly the same
type of a pipe. Constraints (66) and (67) show
that the variables in the model are binary. Given
these explanations, the model is stated as follows:

“ (60)

P
min Z= z X4’1,p'dZ4’1 'CLZP+ z X4’2,p'dZ4’2 CLZP + Z X2’3,p'd22’3 CLZP + z Y6,4,W.dT6,4.CL TW

p=1 p=1
s.t
P P
D 03,522 ) XS,
p=1 p=1
P

Z X4)]’p:1

p=1
P

X4,l,p 7X4’2,p >X2,3,pe{091} >
X6,4,We{0>l} b

The solution obtained from solving the model is
Y6’4,1:X4’1’1:X4’2’1:X2’3’1:1, based on which the
flow rate in pipes is obtained simply in
accordance with constraints (24) and (25) as
follows:

3
JZ,,=D1=2000 "™/, ",

3
fZ,=D3=4000 "/, ",

p=1 w=1

(61)

(62)

(63)

(64)

(65)

p=1,...P (66)
w=1,...,W . (67)

12, ,=D>+D5=3000+4000=7000 mj/ h oo

Yo 42, /2, ,=7000+2000=9000 ™'/, .

Since node 6, which is a candidate TBS
installation site, requires 9000 m3/h of gas, the
optimal choice is to choose TBS type 2 with a
capacity of 10000 m*/h. Calculating gas pressure
and velocity begins from the CGS in the feeding
network and from the TBS in the distribution
network, since their pressures are known (the
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pressure of the TBS in the distribution network is
74.7 psia, and the pressure of the CGS in the
feeding network is 264.7 psia). For instance, the
pressure at node 4, which is a TBS, is P, = 74.7
psia, and since X;,;=1, nodes 2 and 4 are
connected to each other through pipeline type 1
with a diameter of 6 inches. This pipe is 78.1 m
long, and its gas flow, i.e.,fZ472=D2+D3, is 7000
m’/h. The pressure at node 2 is thus calculated
using (1) and gas velocity using (2) and (3) (P, =
73.15 psia and V = 21.19 nv/s). With the pressure
at node 2 being known, the diameter, length, and
gas flow of the pipe connecting this node to node
3 are used to calculate the pressure and average
velocity at this node (P, = 71.93 psia and V =
12.25 m/s). Given that gas velocity in the pipe
connecting node 4 to node 2 (V = 21.19 m/s) is
above the limit, this solution is not considered to
be an optimal solution and should be omitted.
The solution is discarded by adding constraint
(68) to the model (this constraint ensures that the
option will not be chosen again):

Xy 111 Xa0 01X 31 Y64 1<4 . (68)

To obtain a general constraint in relation to
constraint (68), assume that each edge of the
obtained solution can be shown by an ordered
triple of the source node, the destination node and
the type of pipe used between the two nodes, and
M and N series contain these triples for the
feeding network and the distribution network,
respectively. These series have K; (K; = m) and
K, (K; < n) members. Adding the following
constraint to the mathematical model prevents the
reselection of this solution:

Z erp+ Z Yrsw<k1+k2 . (69)

(r,s,p)EM (r,s,W)EN

Further execution of Algorithm 3 in the next
iterations leads to the solution provided in Table
9.

6. Numerical Results and Discussions
To compare the result obtained by Algorithm 1
with the optimal solution obtained by solving the
mathematical model in Section 3-3, six locations
were first assumed for the zones and six locations
for the TBSs. Based on the data provided in the
Appendix, 36 problems were designed and then
solved in a computer with 8G RAM, 2 GHz CPU,
Intel core i7 and 64-bit Windows 8, and the
optimal solution for each problem was obtained.
Algorithm 1 was then implemented in the 64-bit
version of MATLAB and validated in Pipesim-
2011.1. The results are shown in Table 10.

As shown in Table 10, the cost obtained by both
methods is the same in cases where there are
three zones or less. Also, in the two cases
pertaining to rows 28 and 34 of the table, we see
the favorable performance of Algorithm 1 for
networks with small number of nodes. The cost
predicted by Algorithm 1 for networks with more
nodes is higher than the cost predicted in the
optimal solution. Fig. 5 compares the costs
obtained by the two different methods for six
problems using the following equation:

Costgigorithm1-Cost

(70)

Optimal

Costoptimal

The number of zones in each of the six problems
is six and the number of TBS is one in the first
problem, two in the second, three in the third,
four in the fourth, five in the fifth, and six in the
sixth problem.

Based on this figure, although the solution of
Algorithm 1 is further distanced from the optimal
solution when the number of nodes increases, the
total difference is still less than 6.8%.
Furthermore, based on Table 10, it can be easily
demonstrated that the execution time for
obtaining the optimal solution and the execution
time for Algorithm 1 depend more on the number
of zones than the number of TBSs, as shown in
Fig. 6. According to Fig. 6, Algorithm 1 needs a
considerable execution time in the beginning, but
as the number of zones and TBSs increases, the
time required to obtain solution decreases at a
lower rate than the one required for reaching the
optimal solution; in cases with more than five
consumers (zones), the time required for
executing Algorithm 1 is less than the one
required for reaching the optimal solution. This
trend is fully justified considering that the
number of constraints in the mathematical model
follows the following equation:

Number of constraints in the model =
m3+n3+nm2+% (m?>+n*)+2m n +% @m+17 (7D
where m is the number of zones and » is the
number of TBSs, and the number of constraints
grows further once the number of zones increases
at a faster rate than the number of TBSs, given

the nm’ term.

In Algorithm 1, the ants begin moving from each
zone and any increase in the number of zones
therefore directly affects the computing time.

To wvalidate the gas pressure and velocity
calculations, all the problems were solved in
Pipesim according to Table 10, and the average
ratios of the deviations for the two methods were
obtained using the following equations:
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Average pressure deviation=
ntm | Phigorichm 1-PPIPESIM

i=1 (73)

i
PA Igorithm 1

x100
ntm

Average velocity deviation =

n+m Vf‘llgorithm I'VPIPESIM

i=1

(74)

Vj‘llgorilhm 1

x100,
nt+tm

where Pf‘llgorithml and Phpgsyy Tespectively
indicate pressure at node i obtained by solving
the model using Algorithm 1 and solving the
topology obtained from Pipesim; similarly,
Villgorithml and Voyppspy respectively indicate the
average gas velocity in the pipe transmitting gas
to node i obtained by the two noted methods.

As shown in Table 10, the maximum difference
between the two methods is 1.597% and pertains
to the calculation of gas velocity in the problem
in row 32 of the table. Such a difference is well
accepted in designing gas networks.

Solutions provided for small and large network
problems can only serve as an assisting tool for
network designers, who should also use their
ingenuity in designing networks. According to
Fig. 6, as dimensions of the problem increase, the
designer is compelled to use the ACO method
due to the time needed to solve mathematical
models. According to Fig. 5, deviation of the
solution obtained by this method from the
optimal solution increases with increasing
dimension of the problem. In such cases, the
designer can reduce the number of zones by
combining the consumption of two or several
zones and develop a new problem to be solved. In
this case, the obtained solution is not necessarily
an optimal solution to the initial problem. It
should be noted that according to equation (71),
the number of zones has a greater effect on the
time required to solve the mathematical model as
compared to the number of TBSs. In addition, the
designer can assign more pheromones on the
network obtained from optimal solution to the
new problem and enter these values in the ACO
method as 7, to solve the initial problem in order
to increase the likelihood of producing a closer
solution to the optimal one. These approaches are
used in the case study.

7. Case Study
The performance of Algorithm 1 was examined
on a gas supply project in Kelardasht,
Mazandaran, Iran, and the results were compared
with those obtained by the project’s value
engineering team [19]. In this project, gas is
supplied to 256 zones, and Table 11 shows any

pertinent data based on the documentations and
maps received from the Gas Company of
Mazandaran Province. To narrow down the
problem and solve it within a reasonable time, the
number of consumption zones was reduced to 31
large zones in this study and the demand for gas
in each zone was obtained by adding the demands
from the small zones; pertinent data are presented
in the Appendix. Six candidate TBS installation
sites were determined in this project. All the data
required for solving the problem resemble the
data for the previous examples, as shown in the
Appendix.

According to the study performed in [19], the
distribution network presented by the project’s
consulting design team included TBSs 2, 4 and 5
with cost 1,398,726,382, and the network
presented by the project’s value engineering team
included TBSs 1, 4 and 5 with cost
1,372,374,925. Table 12 presents the results
obtained by executing Algorithm 1. Based on this
table, the cost predicted by this algorithm was
1,252,739,300, and this algorithm also selected
TBSs 1, 4 and 5 for the network, but gave
different consumption zones and connections for
the gas supply. Fig. 7 shows the proposed
network. In addition to the better results obtained
from the algorithm, the discussed study [19] has
not determined the types of pipes for the
proposed network and has only given estimates
of the different pipe diameters that can be used in
the network, and the gas pressure and velocity
have not been determined in the study either.

8. Conclusion and Future Research
We proposed a comprehensive mathematical
model for solving urban gas network problems,
such as problems involving distribution and
feeding networks. This model does not consider
optimization of a network with a predefined
design; rather, it provides an optimal design for
gas supply to consumption zones considering the
different limitations in designing gas networks.
The model was applied to small networks and
was validated through an example, and the results
were compared with the ones obtained by
Pipesim. To solve large problems, an Ant Colony
System (ACS) method, as one of the most
efficient methods for the implementation of Ant
Colony Optimization (ACO) algorithms, was
developed and its performance was demonstrated
with an example. A local search method was also
used in combination with the ACS algorithm, as a
mathematical program determining the minimum
pipe diameter so that the pressure and velocity
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limitations of gas networks were met. The time
required for the execution and the costs of the
network designed by the two algorithms were
compared after solving 36 sample problems, and
the execution times for the optimal solution and
the ACS algorithm were found to further grow, as
the number of consumption nodes increased at a
faster rate than the number of candidate TBS
installation sites. Furthermore, the time required
for the execution of the optimal method grew at a
faster rate than the time required for executing
the ACS algorithm. Both algorithms were found
to yield similar solutions to small problems, but,
as the scale of the problem grew, the costs
predicted by the ACS algorithm were more than
the ones predicted by the optimal algorithm. The
proposed model was also applied to a case study
and was shown to yield a more appropriate
solution.

The following cases are identified as subjects for
future studies:

e Use of the Steiner tree (Steiner points) in
the design of urban networks, taking into
account underground gas pipelines
passing through alleys and streets.

e In the present study, the assumption is
that candidate sites for TBS installations
have already been determined. However,
choosing these sites can be a subject for
urban network design studies.

e Repair, maintenance, and risk issues can
also be investigated in modeling urban
gas networks.

e Applying other metaheuristic methods
may prove to be useful.

e The presented approach can also be used
in other networks such as power, water,
computer, etc.
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